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ABSTRACT

One of the challenges of mobile eye tracking is mapping gaze data
on a reference image of the stimulus. Here we present a marker-
tracking system that relies on the scene-video, recorded by eye
tracking glasses, to recognize and track markers and map gaze data
on the reference image. Due to the simple nature of the markers
employed, the current system works with low-quality videos and
at long distances from the stimulus, allowing the use of mobile eye
tracking in new situations.
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1 INTRODUCTION

Wearable eye tracking has provided the possibility for studying gaze
behavior in real-life environments. Most eye tracking glasses record
the scene participants look at in addition to their eye movements,
and then map their gaze data on the scene video. However, in order
to aggregate gaze data from a group of participants, the data needs
to be mapped to a reference image of the stimulus.

For that we can use object recognition for a reference image
in the scene video [De Beugher et al. 2014; Ye et al. 2012]. From
our experience in the field of market research we learned that this
technique does not perform very well in complex scenes, such as
real supermarket shelves, and requires a lot of manual intervention.
Additionally, when participants are allowed to move freely and in-
teract with the stimulus, it becomes almost impossible to reproduce
the exact scene for all sessions, which makes object recognition
more difficult.
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Another technology we can use to map gaze data on a reference
image is marker tracking, similar to that used in Pupil Labs systems
[Kassner et al. 2014]. This is a much more reliable technique, but
we also encountered some limitations with it: Participants need to
stay relatively near from the stimulus for markers to be recognized
and, with low quality video, identifying typical surface-tracking
markers becomes very difficult.

2 DESCRIPTION

Taking the conditions presented above into account, we developed
a system comprising of simple colored markers, to be placed on
the stimulus, and a patent pending algorithm that recognizes and
tracks those markers. Rectangular cells are then identified by the
color combination of the markers that form them (see Figure 1
for example), allowing the system to recognize each cell and its
position in the scene video. Then, the algorithm can then recognize
the stimulus surface and its distance from the participant and its
orientation. Finally, gaze data can be mapped on a reference image
of the stimulus using homographic transformation [Hartley and
Zisserman 2003], allowing for data quantification and aggregation.

Except for adding markers to the stimulus, recording sessions
can proceed normally and without any modification to the proce-
dure. At the end of data collection, all recordings can be processed
automatically and no manual intervention is needed. After process-
ing is done, gaze data mapped to the reference image coordinates
can be exported, alongside the original data in scene-camera co-
ordinates, making it possible to calculate aggregated metrics and
visualize the data.

This system works with low-quality videos, it is resistant to
changes in the scene and it works at much further distance from
the stimulus compared to other technologies (exceeding 5 meters,
depending on the size of the markers). The current system is also
hardware independent, making it usable with any eye tracking
glasses that provide a scene-video and the gaze data mapped to the
scene-video coordinates.

We have tested the system’s accuracy, by collecting gaze data
using Tobii Pro Glasses 2 (Tobii Technology, Sweden) while par-
ticipants looked at a circular target from different distances (100,
200 and 300 cm). Results showed that the system maintains the
accuracy of the eye tracking glasses after mapping the data to the
reference image (see Figure 2).

We are currently testing the system in a supermarket laboratory
to measure the effect of the markers on participants’ attention. Pre-
liminary qualitative analysis, by reviewing sample videos, showed
that participants do not get distracted by the markers in a natural
situation and their attention remains mainly to the actual stimulus.
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(a) Video Snapshot
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Figure 1: Example snapshot image from the scene video recorded by eye tracking glasses (a) and a portion of the reference
image used to map gaze data onto (b). Visible in both images the gaze point and the markers used to recognize the stimulus

surface and 4 cells formed by the markers.
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Figure 2: Accuracy data for the eye tracking glasses (blue)
and the reference image-mapped data (red) in pixels at dif-
ferent distances from the stimulus. Error bars represent
standard error of the mean.

3 USE CASES

The system can be used for studying gaze behavior in natural sit-
uations, when placing markers on the stimulus surface is feasible.
Multiple stimuli can be mapped simultaneously, even if they are
presented in different locations. In a similar manner, when the stim-
ulus is three-dimensional, markers can be added to different sides of

the stimulus and gaze data can be mapped on a separate reference
image for each side.

Applications of this system extend beyond market research, in-
cluding human-computer interaction, ergonomics, usability testing
and others. Moreover, due to its fully automated procedure, it is
ideal for studies with large samples that are very time consuming
with traditional methods.

4 CONCLUSION AND FUTURE WORK

The current system provides a good solution for mapping gaze
data collected with eye tracking glasses onto a reference image.
The innovative part of this system lies in it’s robustness at long
distances and with low-quality videos obtained from state-of-the-
art eye tracking glasses. It also provides access to new variables,
like participants’ presence in front of the stimulus, their distance
and their orientation, which can be used to develop new metrics or
to filter subsets of the data.

When the algorithm is optimized to work in real time, it will open
the possibility to embed markers in computer programs or on other
machines to allow for live human-computer or human-machine
interaction through gaze using wearable eye tracking [Bulling and
Gellersen 2010]. For example, it could be used to achieve joint
attention with robots to study social interaction [Kompatsiari et al.
2018]. Other applications are still to be explored.
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