

Super Bowl Topline 02.02.16

These are findings from an Ipsos poll conducted October 16-20, 2015 on behalf of Bon Appetit. For the survey, a sample of 1,602 adults age 18+ that intend to watch the Super Bowl from the continental U.S., Alaska and Hawaii was interviewed online in English.

The sample for this study was randomly drawn from Ipsos's online panel (see link below for more info on "Access Panels and Recruitment"), partner online panel sources, and "river" sampling (see link below for more info on the Ipsos "Ampario Overview" sample method) and does not rely on a population frame in the traditional sense. Ipsos uses fixed sample targets, unique to each study, in drawing sample. After a sample has been obtained from the Ipsos panel, Ipsos calibrates respondent characteristics to be representative of the U.S. Population using standard procedures such as raking-ratio adjustments. The source of these population targets is U.S. Census 2015 American Community Survey data. The sample drawn for this study reflects fixed sample targets on demographics. Post-hoc weights were made to the population characteristics on gender, age, region, race/ethnicity and income.

Statistical margins of error are not applicable to online polls. All sample surveys and polls may be subject to other sources of error, including, but not limited to coverage error and measurement error. Where figures do not sum to 100, this is due to the effects of rounding. The precision of Ipsos online polls is measured using a credibility interval. In this case, the poll has a credibility interval of plus or minus 2.8 percentage points for all respondents (see link below for more info on Ipsos online polling "Credibility Intervals"). Ipsos calculates a design effect (DEFF) for each study based on the variation of the weights, following the formula of Kish (1965). This study had a credibility interval adjusted for design effect of the following (n=1,602, DEFF=1.6, adjusted Confidence Interval=4.4).

The poll has a credibility interval of plus or minus 2.5 percentage points for all respondents, plus or minus 2.8 percentage points for those who are 21+, and plus or minus 3.9 percentage points for those that plan to drink during the Super Bowl.

For more information about Ipsos online polling methodology, please go here http://goo.gl/yJBkuf

SUPER BOWL

1. Which of the following applies to you? (Asked of all respondents, n=2,009)

I will probably attend or host a Super Bowl <u>party (in my home or someone else's)</u>	31%
I will probably watch the Super Bowl out at a <u>bar or restaurant</u>	6%
I'm <u>not sure</u> where or how I will watch the Super Bowl, but I will probably watch it	
I definitely won't watch the Super Bowl	20%

2. What is your $\underline{\text{main}}$ reason for attending a Super Bowl party? Please choose one response only. (Asked of those who will watch the Super Bowl, n=1,602)

The company of friends and/or family	45%
The game / football	30%
The commercials	12%
The food and drinks	9%
Other	3%

3. Will you...

	% Yes
wear a team jersey while watching the Super Bowl?	35%
sing the national anthem out loud, while it is sung at the Super Bowl?	29%
paint your face while watching the Super Bowl?	10%

Super Bowl Topline 02.02.16

4. If it was possible, which of these singers from history would you most like to hear perform the national anthem at the Super Bowl?

Whitney Houston	23%
Frank Sinatra	15%
Elvis	15%
Jimmy Hendrix	11%
Michael Jackson	11%
Marvin Gaye	5%
Janis Joplin	5%
None of these	15%

5. The next few questions are about Super Bowl parties.

Which of the below scenarios would be worse for a Super Bowl party?

Running out of food would be worse	73%
Running out of alcohol would be worse	27%

6. What is your personal view on "double dipping" when it comes to foods with a dip?

Double dipping is perfectly acceptable	15%
Double dipping is never acceptable	47%
Double dipping is acceptable if you	
flip the food after taking a bite and	38%
dip the other end	

7. In your opinion, what is the <u>best</u> food for a Super Bowl party? Please choose one only.

Wings / Buffalo chicken wings	38%
Pizza	35%
Subs / Submarine sandwiches	16%
Chili	6%
Other	5%

8. When it comes to potato chips, what is your favorite flavor? Choose one only.

Plain	27%
Sour cream & onion	26%
BBQ	26%
Salt & vinegar	15%
Other	5%
None	2%

Super Bowl Topline 02.02.16

9. And for each question below, please indicate your preference:

When it comes to chilli...

Beans	75%
No beans	25%

10. When it comes to guacamole...

Smooth	57%
Chunky	43%

11. When it comes to dips...

Salsa	46%
French onion	33%
Hummus	14%
Other	5%
None	3%

12. When it comes to Doritos...

Nacho cheese	60%
Cool ranch	40%

13. Will you drink alcohol while watching the game? (Asked of those 21+, n=1,545)

Yes	55%
No	30%
Unsure	16%

14. And if you had to choose, would you rather watch the whole game sober, or watch your team lose? (Asked of those who plan to drink during the game at Q13, n=826)

I'd rather stay sober	76%
I'd rather see my team lose	24%

15. Which if any of the following do you plan to drink while watching the game? Choose all that apply. (Asked of those who plan to drink during the game at Q13, n=826)

Spirits / cocktails	37%
Regular beer (not Craft beer or Light beer)	35%
Regular 'Light' beer	33%
Craft beer (small, local, and/or independent brewers only)	32%
Wine	27%
None of these	1%

How to Calculate Bayesian Credibility Intervals

The calculation of credibility intervals assumes that Y has a binomial distribution conditioned on the parameter θ \, i.e., Y| θ ^Bin(n, θ), where n is the size of our sample. In this setting, Y counts the number of "yes", or "1", observed in the sample, so that the sample mean (\overline{y}) is a natural estimate of the true population proportion θ . This model is often called the likelihood function, and it is a standard concept in both the Bayesian and the Classical framework. The Bayesian ¹ statistics combines both the prior distribution and the likelihood function to create a posterior distribution. The posterior distribution represents our opinion about which are the plausible values for θ adjusted after observing the sample data. In reality, the posterior distribution is one's knowledge base updated using the latest survey information. For the prior and likelihood functions specified here, the posterior distribution is also a beta distribution ($\pi(\theta/y)^{\circ}\theta(y+a,n-y+b)$), but with updated hyper-parameters.

Our credibility interval for ϑ is based on this posterior distribution. As mentioned above, these intervals represent our belief about which are the most plausible values for ϑ given our updated knowledge base. There are different ways to calculate these intervals based on $\pi(\theta/y)$. Since we want only one measure of precision for all variables in the survey, analogous to what is done within the Classical framework, we will compute the largest possible credibility interval for any observed sample. The worst case occurs when we assume that a=1 and b=1 and y=n/2. Using a simple approximation of the posterior by the normal distribution, the 95% credibility interval is given by, approximately:

$$\bar{y} \mp \frac{1}{\sqrt{n}}$$

For this poll, the Bayesian Credibility Interval was adjusted using standard weighting design effect 1+L=1.3 to account for complex weighting²

Examples of credibility intervals for different base sizes are below. Ipsos does not publish data for base sizes (sample sizes) below 100.

Sample size	Credibility intervals
2,000	2.5
1,500	2.9
1,000	3.5
750	4.1
500	5.0
350	6.0
200	7.9
100	11.2

¹ Bayesian Data Analysis, Second Edition, Andrew Gelman, John B. Carlin, Hal S. Stern, Donald B. Rubin, Chapman & Hall/CRC | ISBN: 158488388X | 2003

² Kish, L. (1992). Weighting for unequal Pi . Journal of Official, Statistics, 8, 2, 183200.